Da-Gang WANG, Ying MA
Journal of Consumer Psychology, Volume 22, Issue 2, April 2012, Pages 191-194
Publication year: 2015


The interactions between herbivorous insects and their host plants are expected to be influenced by changing climates. Modern oaks provide an excellent system to examine this assumption because their interactions with herbivores occur over broad climatic and spatial scales, they vary in their defensive and nutritional investment in leaves by being deciduous or evergreen, and their insect herbivores range from generalists to highly specialized feeders. In this study, we surveyed leaf-litter samples of four oak species along an elevation gradient, from coastal northern California, USA, to the upper montane woodlands of the Sierra Nevada, to examine the relationship between climatic factors (mean annual temperature and precipitation) and oak herbivory levels at multiple scales; across all oak species pooled, between evergreen and deciduous species and within species.

Overall, temperature and precipitation did not appear to have a significant effect on most measures of total herbivore damage (percent leaves damaged per tree, percent leaf area removed and average number of feeding damage marks per leaf) and the strongest predictor of herbivore damage overall was the identity of the host species. However, increases in precipitation were correlated with an increase in the actual leaf area removed, and specialized insects, such as those that make leaf mines and galls, were the most sensitive to differences in precipitation levels. This suggests that the effects of changing climate on some plant–insect interactions is less likely to result in broad scale increases in damage with increasing temperatures or changing precipitation levels, but is rather more likely to be dependent on the type of herbivore (specialist vs. generalist) and the scale (species vs. community) over which the effect is examined.